On the nuclear forces and the magnetic moments of the neutron and the proton

نویسنده

  • H. H. Wills
چکیده

It was first suggested by Heisenberg that the forces between a proton and a neutron are connected with an exchange of charge between the two heavy particles. This exchange nature of the neutron-proton forces is now generally accepted. It would follow from this assumption that in suitable circumstances a proton (neutron) could emit a positively (negatively) charged particle transforming itself into a neutron (proton). At first sight it seemed that the emission of positive or negative electrons in the /3-decay could in this way be made responsible for the nuclear forces. This was, in fact, suggested by Iwanenko (I934) and Tamm (I934). It has also been pointed out by Wick (I935) that the virtual emission of fl-electrons might explain the values of the magnetic moments of the proton and the neutron. These theories, however, were not successful. The nuclear forces, for instance, turn out to be too small by a factor of more than 1010 and have far too small a range; this is due to the fact that the /3-decay constant is extremely small. Since the /3-decay is a process which, in nuclear dimensions, takes "geological ages", one might think that the ordinary properties of the heavy particles have no direct connexion with this process and that an approximate theory of the nuclear forces should be possible without the inclusion of the /3-decay. A new hope for such an "exchange theory" of the properties of nuclei is offered by the probable existence of a hitherto unknown type of particle constituting the hard component of cosmic radiation. Since these particles do not lose much energy by radiation, it has been suggested by Neddermeyer and Anderson (I937) that they are (positive and negative) "heavy electrons" with a mass between that of an electron and a proton. From cosmic-ray data the mass of these particles can hardly be determined yet, [ 154 ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton Therapy of eye using MCNPX code

Introduction: Proton radiotherapy is the one of advanced teletherapy methods. The protons deposit their maximum energy in a position called Bragg peak. Therefore, for treatment of cancer, the tumor should be placed at the Bragg peak or SOBP. The scattered photons and neutrons is a challenge in proton radiotherapy. The aim of this study is calculation of absorbed dose from scatt...

متن کامل

Calculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code

Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver.   Materials and Methods: For si...

متن کامل

Design and calibration of a passive detector for separating neutron, proton and alpha particles in mixed radiation fields

In this study, calibration process was carried out for deigned new CR-39 nuclear track detector for protons, neutrons and alpha particles separately under the same etching condition. In order to aim this purpose, americium-beryllium standard source (241Am-Be) and Plexiglas phantom for neutron irradiation, brass collimators and americium standard source (241Am) for alpha irradiation and the acce...

متن کامل

Assessment of The Relation Between Energy Of Primary Protons And Undesired Neutron Dose During Proton Therapy By Monte Carlo Method

Introduction: High-energy beams of protons offer significant advantages for the treatment of deepseated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum -Bragg peak- near the end of range with a sharp fall-off at the distal edge. Alongside its advantages there are some point that they need to meticul...

متن کامل

Radiation Effects on the On-line Monitoring System of a Hadrontherapy Center

Introduction Today, there is a growing interest in the use of hadrontherapy as an advanced radiotherapy technique. Hadrontherapy is considered a promising tool for cancer treatment, given its high radiobiological effectiveness and high accuracy of dose deposition due to the physical properties of hadrons. However, new radiation modalities of dose delivery and on-line beam monitoring play crucia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008